Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures.
نویسندگان
چکیده
To address the question of the relative contributions of glial and neuronal glutamate transport in the vertebrate CNS, we studied the distribution of forebrain glutamate transporters in rat hippocampal microcultures, a preparation in which physiological functions of glutamate transporters have been well characterized. Two of the three transporters, GLAST (EAAT1) and EAAC1 (EAAT3), are localized to microculture glia and neurons, respectively, as expected. However, we find strong immunoreactivity for the third glutamate transporter GLT-1 (EAAT2), a putatively glial transporter, in microculture neurons and in a small subset of microculture glia. Indistinguishable immunohistochemical staining patterns for GLT-1 were obtained with antibodies directed against both the N terminal and C terminal of the GLT-1 protein. Double-labeling experiments suggest that neuronal GLT-1 protein is primarily localized to the dendrites of excitatory neurons. Neuronal electrogenic transport currents in response to D-aspartate applications were occluded by the selective GLT-1 inhibitor dihydrokainate. In contrast, glia exhibited a larger transporter current density than did neurons, and the glial transport current was less sensitive to dihydrokainate. Neuronal transport currents were potentiated less than were glial currents when the chaotropic anion thiocyanate was substituted for gluconate in the whole-cell recording pipette, consistent with the previously reported lower anion permeability of EAAC1 and GLT-1 compared with that of GLAST. After microculture glia were rendered nonviable, excitatory autaptic currents (EACs) were prolonged in the presence of dihydrokainate, suggesting that neuronal GLT-1 is capable of participating in the clearance of synaptically released glutamate. Our results suggest that the initially proposed characterization of GLT-1 as a purely glial transporter is too simplistic and that under certain conditions functional GLT-1 protein can be expressed in brain neurons. The study suggests that changes in GLT-1 levels that occur with pathology or experimental manipulations cannot be assumed to be glial.
منابع مشابه
Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1.
Glutamate transporters remove glutamate from the extracellular space and maintain it below neurotoxic levels under normal conditions. However, the dynamics under ischemic conditions remain to be determined. In the present study, we evaluated the function of the glial glutamate transporter (GLT-1) during brain ischemia by using an in vivo brain microdialysis technique in GLT-1 mutant mice. A mic...
متن کاملNeuronal activity regulates glutamate transporter dynamics in developing astrocytes.
Glutamate transporters (GluTs) maintain a low ambient level of glutamate in the central nervous system (CNS) and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here, we examined the subcellular distribution and dynamic remodeling of the pre...
متن کاملImpairment of Neuronal Glutamate Uptake and Modulation of the Glutamate Transporter GLT-1 Induced by Retinal Ischemia
Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated ...
متن کاملEstrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke
Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transport...
متن کاملCeftriaxone improves spatial learning and memory in chronic cerebral hypoperfused rats
Cerebral hypoperfusion is associated with cognitive decline in ageing, mild cognitive impairment, vascular type dementia, and Alzheimer’s disease. The mechanisms leading to such neurological impairments are still uncertain. Although several mechanisms have been proposed as contributing factors leading to neuronal injury, glutamate excitotoxicity seems to be the relevant one. Recently, it was fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 12 شماره
صفحات -
تاریخ انتشار 1998